RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

SECOND YEAR [2015-18] B.A./B.Sc. THIRD SEMESTER (July – December) 2016 Mid-Semester Examination, September 2016

Date : 10/09/2016 Time : 11 am - 1 pm COMPUTER SCIENCE (Honours)

Paper : III

Full Marks : 50

[Use a separate Answer Book for each group]

$\underline{Group-A}$

		(Answer <u>any three</u> questions)	[3×5]
1.	a) b)	If A, B, C are three non-empty sets, then prove that $A - (B \cap C) = (A - B) \bigcup (A - C)$. Find the power sets of the following set: $\{1, \phi, \{\phi\}\}$.	[3] [2]
2.	Write down and proof the general inclusion-exclusion principle.		[2+3]
3.	a) b)	If the function $f: R \to R$ is defined by f(x) = 3x - 4, $x > 0and -3x + 2, x \le 0, determine f^{-1}(2).If R be a relation on the set of integers, defined as aRb => 2a+3b is divisible by 5, show that Ris an equivalence relation$	[2]
4.	a) b)	Using Warshall algorithm, find the matrix of transitive closure of the relation $R = \{(1,1), (1,3), (2,3), (2,4), (3,2), (3,4), (4,1)\}$ What do you mean by Fuzzy set?	[3] [2]
5.	a) b)	Show that the set of all positive rational numbers form an abelian group under the composition $*$ defined by $a*b = ab/2$. Define Cyclic group.	[4] [1]
		<u>Group – B</u>	
		(Answer <u>any two</u> questions)	[2×5]
6.	a) b)	Define edge disjoined subgraph with a suitable example. Show ring-sum operation on two graphs with proper example.	[2] [3]
7.	a) b)	Draw a graph in which an Euler Line is also a Hamiltonian circuit. What can you say about such graph in general? Provide some real world scenarios which depict the Hamiltonian circuit phenomenon.	[3] [2]
8.	a) b)	Define Arbitrarily Traceable Graph. Prove that if a connected graph G is decomposed into two subgraph g_1 and g_2 , there must be one vertex common between g_1 and g_2 .	[2] [3]
		<u>Group – C</u>	
		(Answer <u>any two</u> questions)	[2×5]
9.	a)	Find the output of the following code:	[2]

int sum(int x, int y, int z=0, int w)

{

}

return (x + y + z + w);

		int main()			
		{ $cout < sum(10, 15, 16) < endly$			
		cout << sum(10, 15, 16) << endl:			
		return 0:			
		}			
	b)	Give an example where 'main()' function can be used as a friend function. State the restrictions imposed on friend function.	[2+1]		
10.	a)	Why '?' operator cann't be overloaded?	[1.5]		
10.	b)	Describe the concept of Nested class with suitable example. What do you mean by Oualifier	[10]		
	- /	class?	8+0.5]		
11.	Sta wh	te whether 'this' pointer is suitable for static member function? Mention three circumstances ere compiler may not perform inlining.	[2+3]		
Group – D					
		(Answer <u>any three</u> questions)	[3×5]		
12.	12. For a given Binary tree, write a function to print all the nodes at level k where k and the root of the				
	tree	e are the only input to the function.	[5]		
13	٨	neight balanced hinary tree satisfies the following property:			
15.	ΥT	be beights of the two child subtrees of any node differ by at most one "			
	For	a given binary tree, check whether it is height balanced or not	[5]		
	1 01		[0]		
14.	Wh wit	hat are the differences between a binary search tree and an AVL tree? Construct an AVL tree h the following set of characters. Show each steps.			
		E, J, P, M, Q, N, Y, U, S, W	[5]		

 15. Define a min-heap. Given the following ten numbers, construct a max-heap showing each steps.
 5, 10, 15, 13, 17, 14, 27, 21, 19, 22
 [5]

_____× _____